Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38578386

RESUMEN

INTRODUCTION: Blaschko linear psoriasis (BLP) is characterized by the linear distribution of psoriatic skin lesions along the Blaschko lines. BLP can be divided into type I and type II, mainly on the basis of clinical manifestations. BLP can easily cause psychological burdens in patients and clinical confusion for physicians. Here, we summarize clinical cases to provide a better understanding of BLP. METHODS: The subjects included patients with BLP who visited our dermatology departments and those reported in the literature obtained from the PubMed and Wanfang databases. Quantitative data were presented as means ± SD (standard deviation), and qualitative data were represented by the frequency. Student's t test was employed to compare means, whereas chi-square tests were used for analyzing qualitative data. RESULTS: A total of 74 patients with BLP (5 our patients, 69 from literature) were included, with 61 type I and 13 type II patients. We summarize BLP's characteristics as follows: (1) More frequent in male individuals, especially in type II; (2) Earlier onset than classical psoriasis; (3) Mainly distributed unilaterally, and no preference for left or right site; (4) Asymptomatic or slight pruritus; (5) Mostly negative family history of psoriasis; (6) Possible involvement of the nails/scalp (mainly for type II); (7) Possible exogenous triggering or aggravation factors; (8) Possible concomitant classical plaque or guttate psoriasis lesions, especially in type II; (9) Conforming to histopathology features of classical psoriasis; (10) Relatively favorable response to antipsoriatic treatment, although poor for superimposed areas in type II. CONCLUSION: This study analyzed the clinical characteristics and therapeutic aspects of BLP. Compared with published studies, we have new findings, such as gender bias. Besides traditional antipsoriatic treatment, a personalized selection of biologics may also be a promising choice. Dermatologists should recognize and understand the significance of this disease, and provide patients with appropriate psychological counseling and clinical treatments.

2.
Water Res ; 255: 121533, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38569359

RESUMEN

Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.

3.
Plant Cell Environ ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644762

RESUMEN

The polar auxin transport is required for proper plant growth and development. D6 PROTEIN KINASE (D6PK) is required for the phosphorylation of PIN-FORMED (PIN) auxin efflux carriers to regulate auxin transport, while the regulation of D6PK stabilization is still poorly understood. Here, we found that Cytosolic ABA Receptor Kinases (CARKs) redundantly interact with D6PK, and the interactions are dependent on CARKs' kinase activities. Similarly, CARK3 also could interact with paralogs of D6PK, including D6PKL1, D6PKL2, and D6PKL3. The genetic analysis shows that D6PK acts the downstream of CARKs to regulate Arabidopsis growth, including hypocotyl, leaf area, vein formation, and the length of silique. Loss-of-function of CARK3 in overexpressing GFP-D6PK plants leads to reduce the level of D6PK protein, thereby rescues plant growth. In addition, the cell-free degradation assays indicate that D6PK is degraded through 26 S proteasome pathway, while the phosphorylation by CARK3 represses this process in cells. In summary, D6PK stabilization by the CARK family is required for auxin-mediated plant growth and development.

4.
Food Chem X ; 21: 101177, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38434693

RESUMEN

Casein micelle has a structure of outer hydrophilicity and inner hydrophobicity, its typical digestion characteristic is gastric coagulation. Based on calcium content as the key factor to control this process, high hydrostatic pressure (HHP) was firstly used to modify the micelle structure by mediating the tight connection between casein molecules themselves and with colloidal calcium, then the quercetin-loaded delivery systems were prepared. And in order to investigate the effect of exogenous calcium, calcium chloride was added for digestion. The results indicated that HHP broke the limitation of casein micelles as delivery carriers for hydrophobic components and increased the EE from 51.18 ± 3.07 % to 76.17 ± 3.41 %. During gastric digestion, higher pressure and exogenous calcium synergistically increased the clotting ability and inhibited the release of quercetin. In the small intestine, curds decomposed more slowly under higher pressure and calcium concentration, so the degradation of quercetin was effectively inhibited.

5.
Neurobiol Dis ; 194: 106468, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460801

RESUMEN

Intracerebral hemorrhage (ICH) is a subtype of stroke marked by elevated mortality and disability rates. Recently, mounting evidence suggests a significant role of ferroptosis in the pathogenesis of ICH. Through a combination of bioinformatics analysis and basic experiments, our goal is to identify the primary cell types and key molecules implicated in ferroptosis post-ICH. This aims to propel the advancement of ferroptosis research, offering potential therapeutic targets for ICH treatment. Our study reveals pronounced ferroptosis in microglia and identifies the target gene, cathepsin B (Ctsb), by analyzing differentially expressed genes following ICH. Ctsb, a cysteine protease primarily located in lysosomes, becomes a focal point in our investigation. Utilizing in vitro and in vivo models, we explore the correlation between Ctsb and ferroptosis in microglia post-ICH. Results demonstrate that ICH and hemin-induced ferroptosis in microglia coincide with elevated levels and activity of Ctsb protein. Effective alleviation of ferroptosis in microglia after ICH is achieved through the inhibition of Ctsb protease activity and protein levels using inhibitors and shRNA. Additionally, a notable increase in m6A methylation levels of Ctsb mRNA post-ICH is observed, suggesting a pivotal role of m6A methylation in regulating Ctsb translation. These research insights deepen our comprehension of the molecular pathways involved in ferroptosis after ICH, underscoring the potential of Ctsb as a promising target for mitigating brain damage resulting from ICH.


Asunto(s)
Lesiones Encefálicas , Catepsina B , Ferroptosis , Microglía , Humanos , Lesiones Encefálicas/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Hemorragia Cerebral/patología , Microglía/metabolismo , Animales , Ratones
6.
Nanomaterials (Basel) ; 14(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38470804

RESUMEN

The quest for efficient catalysts based on abundant elements that can promote the selective CO2 hydrogenation to green methanol still continues. Most of the reported catalysts are based on Cu/ZnO supported in inorganic oxides, with not much progress with respect to the benchmark Cu/ZnO/Al2O3 catalyst. The use of carbon supports for Cu/ZnO particles is much less explored in spite of the favorable strong metal support interaction that these doped carbons can establish. This manuscript reports the preparation of a series of Cu-ZnO@(N)C samples consisting of Cu/ZnO particles embedded within a N-doped graphitic carbon with a wide range of Cu/Zn atomic ratio. The preparation procedure relies on the transformation of chitosan, a biomass waste, into N-doped graphitic carbon by pyrolysis, which establishes a strong interaction with Cu nanoparticles (NPs) formed simultaneously by Cu2+ salt reduction during the graphitization. Zn2+ ions are subsequently added to the Cu-graphene material by impregnation. All the Cu/ZnO@(N)C samples promote methanol formation in the CO2 hydrogenation at temperatures from 200 to 300 °C, with the temperature increasing CO2 conversion and decreasing methanol selectivity. The best performing Cu-ZnO@(N)C sample achieves at 300 °C a CO2 conversion of 23% and a methanol selectivity of 21% that is among the highest reported, particularly for a carbon-based support. DFT calculations indicate the role of pyridinic N doping atoms stabilizing the Cu/ZnO NPs and supporting the formate pathway as the most likely reaction mechanism.

7.
Innovation (Camb) ; 5(3): 100596, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38510069

RESUMEN

The inadequacy of tactile perception systems in humanoid robotic manipulators limits the breadth of available robotic applications. Here, we designed a multifunctional flexible tactile sensor for robotic fingers that provides capabilities similar to those of human skin sensing modalities. This sensor utilizes a novel PI-MXene/SrTiO3 hybrid aerogel developed as a sensing unit with the additional abilities of electromagnetic transmission and thermal insulation to adapt to certain complex environments. Moreover, polyimide (PI) provides a high-strength skeleton, MXene realizes a pressure-sensing function, and MXene/SrTiO3 achieves both thermoelectric and infrared radiation response behaviors. Furthermore, via the pressure response mechanism and unsteady-state heat transfer, these aerogel-derived flexible sensors realize multimodal sensing and recognition capabilities with minimal cross-coupling. They can differentiate among 13 types of hardness and four types of material from objects with accuracies of 94% and 85%, respectively, using a decision tree algorithm. In addition, based on the infrared radiation-sensing function, a sensory array was assembled, and different shapes of objects were successfully recognized. These findings demonstrate that this PI-MXene/SrTiO3 aerogel provides a new concept for expanding the multifunctionality of flexible sensors such that the manipulator can more closely reach the tactile level of the human hand. This advancement reduces the difficulty of integrating humanoid robots and provides a new breadth of application scenarios for their possibility.

8.
Anal Chim Acta ; 1299: 342451, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38499431

RESUMEN

In this work, an effective competitive-type electrochemiluminescence (ECL) immunosensor was constructed for zearalenone determination by using Zr-MOF nanoplates as the ECL luminophore and Au@MoS2 nanoflowers as the substrate material. Zr-MOF have an ultra-thin sheet-like structure that accelerates the transfer of electrons, ions and co-reactant intermediates, which exhibited strong and stable anodic luminescence. The three-dimensional Au@MoS2 nanoflowers would form a thin film modification layer on the glassy carbon electrode (GCE). And its good electrical conductivity and higher specific surface area utilization further improving the sensitivity of the ECL immunosensor. Under the optimized conditions, the proposed immunosensor exhibited satisfactory stability, sensitivity and accuracy, and its ECL signal was proportional to the logarithm of ZEN concentration (0.0001-100 ng/mL) and the limit of detection (LOD) was 0.034 pg/mL. In addition, the results of recovery experiment acquired for wheat flour and pig urine samples further proved the feasibility of the immunosensor for the detection of real samples, indicating its potential for ultrasensitive detection of ZEN.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Zearalenona , Animales , Porcinos , Molibdeno , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Harina , Triticum , Límite de Detección , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Oro/química
9.
Ann Clin Lab Sci ; 54(1): 26-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38514058

RESUMEN

OBJECTIVE: This study aimed to investigate the roles of nuclear factor-kappa B p65 (NF-[Formula: see text]B p65) and tumor necrosis factor-α (TNF-α) in cell apoptosis occurring in the fetal membranes of pregnant women who experience preterm premature rupture of membranes (PPROM). METHODS: This was a case-control study involving 57 pregnant women who delivered in the obstetric department of Affiliated Loudi Hospital, Hengyang Medical School, University of South China, from June 2021 to June 2022. Samples of fetal membrane tissue were collected from pregnant women with PPROM (n=27) and pregnant women who had normal deliveries (control group; n=30). The membrane tissue morphology of both groups was observed, and the expression of NF-[Formula: see text]B p65, p-NF-[Formula: see text]B p65, TNF-α, and caspase-3 was detected. Apoptosis in fetal membranes was examined. RESULTS: Morphological evaluation of the fetal membrane tissues obtained from patients with PPROM revealed an abnormal structure with a thin collagen fiber layer and cells with a largely vacuolar cytoplasm. There was a positive correlation between the expression of p-NF-[Formula: see text]B p65/NF-[Formula: see text]B p65 and cell apoptosis (r1 =0.89, R2 =0.805, P=0.00). Furthermore, TNF-α was positively correlated with fetal membrane cell apoptosis (r2 =0.93, R2=0.881, P=0.00). CONCLUSION: NF-[Formula: see text]B p65 is involved in the occurrence of PPROM by promoting the expression of TNF-α, which upregulates caspase-3 to cause apoptosis of fetal membrane cells.


Asunto(s)
Apoptosis , Membranas Extraembrionarias , Rotura Prematura de Membranas Fetales , Factor de Transcripción ReIA , Factor de Necrosis Tumoral alfa , Femenino , Humanos , Embarazo , Estudios de Casos y Controles , Caspasa 3/metabolismo , Membranas Extraembrionarias/metabolismo , Membranas Extraembrionarias/patología , Rotura Prematura de Membranas Fetales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción ReIA/metabolismo , Adulto
10.
Immun Inflamm Dis ; 12(3): e1225, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38533918

RESUMEN

BACKGROUND: The dosage of ovalbumin (OVA) during the sensitization stage is considered a crucial factor in the development of airway hyperresponsiveness (AHR). However, the inconsistent dosages of sensitizing OVA used in current studies and the lack of research on their impact on AHR are notable limitations. METHODS: We examined the impact of increasing sensitizing doses of OVA in a murine asthma model, which entailed initial sensitization with OVA followed by repeated exposure to OVA aerosols. BALB/c mice were primed with doses of OVA (0, 10, 20, 50, and 100 µg) plus 1 mg Alum on Days 0 and 7, and were challenged with OVA aerosols (10 mg/mL for 30 min) between Days 14 and 17. Antigen-induced AHR to methacholine (MCh), as well as histological changes, eosinophilic infiltration, and epithelial injury were assessed. RESULTS: The result indicated that there are striking OVA dose-related differences in antigen-induced AHR to MCh. The most intense antigen-induced AHR to MCh was observed with sensitization at 50 µg, while weaker responses were seen at 10, 20, and 100 µg. Meanwhile, there was a significant increase in eosinophil count with sensitization at 50 µg. The changes of AHR were correlated with total cells count, lymphocytes count, eosinophils count, and basophils count in bronchoalveolar lavage fluid; however, it did not correlate with histological changes such as cellular infiltration into bronchovascular bundles and goblet cell hyperplasia of the bronchial epithelium. CONCLUSION: Overall, this study demonstrated that sensitization with 50 µg of OVA resulted in the most significant AHR compared to other dosages. These findings may offer valuable insights for future research on mouse asthma modeling protocols.


Asunto(s)
Asma , Hiperreactividad Bronquial , Hipersensibilidad Respiratoria , Animales , Ratones , Ovalbúmina , Aerosoles y Gotitas Respiratorias , Asma/patología , Cloruro de Metacolina
11.
ACS Cent Sci ; 10(2): 358-366, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38435533

RESUMEN

Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (Kcat/Km) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.

12.
Environ Sci Technol ; 58(14): 6435-6443, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551393

RESUMEN

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.


Asunto(s)
Incrustaciones Biológicas , Nanopartículas , Ósmosis , Nylons/química , Grabado y Grabaciones , Membranas Artificiales , Agua/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-38323647

RESUMEN

The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.

14.
Biofabrication ; 16(2)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38408382

RESUMEN

Pressure ulcers (PUs) have emerged as a substantial burden on individuals and society. The introduction of innovative dressings that facilitate the healing of pressure ulcer wounds represents a cost-effective alternative for treatment. In this study, the emphasis is on the preparation of Carthamus tinctorius L. polysaccharide (CTLP) as hydrogel microspheres (MPs), which are then encapsulated within a hydrogel matrix crosslinked with phenylboronic acid gelatin (Gelatin-PBA) andϵ-polylysine-grafted catechol (ϵ-PL-Cat) to enable sustained release for promoting pressure ulcer healing. The presented Gelatin-PBA/ϵ-PL-Cat (GPL)/CTLP-MPs hydrogel demonstrated outstanding self-healing properties. In addition,in vitroexperiments revealed that the hydrogel exhibited remarkable antibacterial activity, excellent biocompatibility. And it showed the capacity to promote vascular formation, effectively scavenge reactive oxygen species, and facilitate macrophage polarization from the M1 to M2 phenotype.In vivowound healing of mice PUs indicated that the prepared GPL/CTLP-MPs hydrogel effectively accelerated the formation of granulation tissue and facilitated the healing of the wounds. In summary,in vivoandin vitroexperiments consistently highlight the therapeutic potential of GPL/CTLP-MPs hydrogel in facilitating the healing process of PUs.


Asunto(s)
Carthamus tinctorius , Úlcera por Presión , Animales , Ratones , Hidrogeles/farmacología , Gelatina , Polilisina/farmacología , Especies Reactivas de Oxígeno , 60489 , Macrófagos , Antibacterianos/farmacología , Supuración
15.
BMC Public Health ; 24(1): 499, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365639

RESUMEN

BACKGROUND: Chronic kidney disease (CKD), often coexisting with various systemic disorders, may increase the risk of falls. Our study aimed to assess the prevalence and risk of falls among patients with CKD in China. METHODS: We included patients with/without CKD from China Health and Retirement Longitudinal Study (CHARLS). Our primary outcome was the occurrence of fall accidents within the past 2 years. To enhance the robustness of our findings, we employed a multivariable logistic regression model, conducted propensity score analysis, and applied an inverse probability-weighting model. RESULTS: A total of 12,658 participants were included, the prevalence of fall accident rates were 17.1% (2,028/11,837) among participants without CKD and 24.7% (203/821) among those with CKD. In the inverse probability-weighting model, participants with CKD exhibited higher fall accident rates (OR = 1.28, 95% CI: 1.08-1.53, p = 0.005 ). Sensitivity and subgroup analysis showed the results still stable. CONCLUSIONS: The population in China afflicted with CKD has a significantly heightened risk of experiencing falls, underscoring the crucial importance of intensifying efforts in assessing and preventing fall risks.


Asunto(s)
Insuficiencia Renal Crónica , Jubilación , Humanos , Estudios Longitudinales , Accidentes por Caídas , Insuficiencia Renal Crónica/epidemiología , China/epidemiología
16.
PLoS Pathog ; 20(2): e1011948, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300972

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Ratones , Humanos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Anticuerpos Monoclonales , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos
17.
Oral Dis ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326698

RESUMEN

OBJECTIVE: This study aimed to determine the role of c-Fos in growth and invasion of oral squamous cell carcinoma (OSCC). METHODS: Immunohistochemistry was used to assess c-Fos expression in 94 OSCC tissues and 30 adjacent normal tissues, the correlation between c-Fos expression and clinicopathological characteristics was examined, and Kaplan-Meier and Cox analysis were used to investigate the role of c-Fos in predicting the prognosis of OSCC patients. The effects of c-Fos on the growth and invasion of OSCC were disclosed by overexpression and knockdown of c-Fos. Furthermore, based on bioinformatics prediction, the effect of miR-155-5p on c-Fos expression was examined, and dual-luciferase reporter assay system was used to determine whether miR-155-5p regulated the transcriptional activity of c-Fos in OSCC. RESULTS: c-Fos was markedly increased in OSCC tissues and cells. c-Fos upregulation indicates a poor prognosis in OSCC patients, and c-Fos promotes cell proliferation, migration, and invasion in OSCC. miR-155-5p could regulate the expression and the transcriptional activity of c-Fos by directly targeting the c-Fos 3'-UTR. CONCLUSION: This study demonstrated that c-Fos contributed to the progression of OSCC and may act as a potential target for OSCC therapy, and a potential prognostic biomarker of OSCC.

18.
Pest Manag Sci ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252701

RESUMEN

BACKGROUND: Plutella xylostella (Linnaeus) is a destructive pest of cruciferous crops due to its strong reproductive capacity and extensive resistance to pesticides. Seminal fluid proteins (SFPs) are the main effective factors that determine the reproductive physiology and behaviour of both sexes. Although an increasing number of SFPs have been identified, the effects of astacins in SFPs on agricultural pests have not yet been reported. Here, we elucidated the mechanisms by which Sast1 (seminal astacin 1) regulates the fertility of Plutella xylostella (L.). RESULTS: PxSast1 was specifically expressed in the testis and accesssory gland. CRISPR/Cas9-induced PxSast1 knockout successfully constructed two homozygous mutant strains. Sast1 impaired the fertility of P. xylostella by separately regulating the reproductive capacity of males and females. Loss of PxSast1, on the one hand, significantly decreased the ability of males to mate and fertilize, mainly manifested as shortened mating duration, reduced mating competitiveness and decreased eupyrene sperm production; on the other hand, it significantly inhibited the expression of chorion genes in females, resulting in oogenesis deficits. Simultaneously, for mated females, the differentially expressed genes in signalling pathways related to oogenesis and chorion formation were significantly enriched after PxSast1 knockout. CONCLUSION: These analyses of the functions of PxSast1 as the regulator of spermatogenesis and oogenesis establish its importance in the fertility process of P. xylostella, as well as its potential as a promising target for genetic regulation-based pest control. © 2024 Society of Chemical Industry.

19.
ACS Nano ; 18(4): 2885-2897, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38236146

RESUMEN

Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.

20.
Mol Cell Biochem ; 479(2): 393-417, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37079208

RESUMEN

Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.


Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Humanos , Cadenas Pesadas de Miosina/genética , Enfermedades Musculares/genética , Músculo Esquelético , Cardiomiopatías/genética , Corazón , Mutación , Fenotipo , Miosinas Cardíacas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...